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ABSTRACT

Modern neural models are commonly adapted through direct modification of model parameters,
including fine-tuning and reinforcement learning–based alignment. While effective for short-term
optimization, such weight-based adaptation can introduce irreversible changes to core model behavior,
manifesting as reasoning degradation, loss of prior capabilities, or catastrophic forgetting. In this work,
we study structural irreversibility as an inherent limitation of shared-parameter adaptation. Through
controlled experiments, we show that direct weight mutation entangles task-specific objectives with
foundational model parameters, producing persistent behavioral drift that is not recoverable through
practical post-hoc restoration procedures. In contrast, we examine a reversible adaptation paradigm in
which learned behaviors are isolated into removable runtime artifacts while the base model remains
frozen. We demonstrate that this approach enables meaningful task-level adaptation while enabling
empirical rollback to the original model state, with near-zero post-reset divergence and full behavioral
recoverability. We formalize this distinction by introducing recoverability as an explicit evaluation
criterion for adaptive systems, and we propose Structural Variance Analysis for Robustness (SVAR)
as a diagnostic methodology for assessing behavioral stability under controlled perturbations. Our
results suggest that reversibility is an underexplored structural property with significant implications
for the safety, controllability, and longevity of adaptive neural systems.

1 Introduction

This paper examines the structural properties of neural adaptation mechanisms under sequential learning. We focus
on the relationship between parameter modification, behavioral stability, and recoverability, and outline our empirical
findings and contributions below.

1.1 Motivation

After pretraining, many state-of-the-art neural models are routinely adapted to accommodate evolving task specifications,
safety requirements, and alignment objectives. Standard adaptation methods include continual fine-tuning, reinforcement
learning from human feedback (RLHF), and other post-training optimization procedures that directly update shared
model parameters.

While effective in the short term, such continuous adaptation exerts persistent alignment pressure on the model’s
parameter space. In practice, repeated weight updates have been observed to induce irreversible degradation of
core behaviors, including declines in reasoning performance, loss of previously learned capabilities, and unintended
behavioral drift. These effects are often difficult to isolate or correct once they emerge, as task-specific objectives
become entangled with foundational representations.
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Critically, modern adaptation pipelines provide limited guarantees of behavioral rollback. Once shared model parameters
are updated, restoring a model to a previous behavioral state typically requires full checkpoint restoration or costly
retraining, offering no principled mechanism for reversibility at the behavioral level. This lack of recoverability poses
challenges for long-lived deployment, safety assurance, and iterative alignment of large neural systems.

1.2 Core Observation

Our core observation is that the reversibility of neural adaptation is fundamentally determined by where adaptive
behavior is represented within the model architecture. In conventional weight-based adaptation, behavioral changes
are implemented through direct modification of shared model parameters. Because these parameters simultaneously
encode multiple capabilities and abstractions, task-specific objectives become entangled with core representations, a
phenomenon that has been widely noted in the continual learning literature [1, 2]. As a result, behavioral changes
introduced during adaptation are not cleanly localized, and subsequent attempts to revert or undo the adaptation often
fail to fully restore the original behavior, leading to persistent drift or degradation [3].

In contrast, when adaptive behavior is structurally separated from the base model—by isolating learned behavior
into distinct, removable components while keeping the core parameters frozen, substantially improved retention and
recoverability have been reported in prior work [3, 4]. Because the base model parameters remain unchanged, rollback
does not rely on approximations, retraining, or checkpoint restoration, but instead can be achieved through explicit
removal or deactivation of the behavioral component.

Crucially, this contrast indicates that reversibility is not primarily a function of improved training techniques, optimiza-
tion strategies, or regularization methods. Rather, it is a structural property of the adaptation paradigm itself—specifically,
whether adaptive behavior is entangled with or decoupled from the core representational substrate. From this perspective,
irreversibility emerges not as an incidental training artifact, but as a predictable consequence of shared-parameter
adaptation, consistent with observations across continual learning and parameter isolation approaches [2, 4].

1.3 Contributions

This work makes the following contributions:

• We formalize a distinction between model identity and adaptive behavior in Section 3.1, enabling precise
reasoning about rollback and behavioral preservation.

• We identify structural irreversibility in Section 3.3, as a fundamental limitation of weight-based neural
adaptation, arising from the entanglement of task-specific objectives with shared model parameters.

• We empirically compare irreversible weight-based adaptation with reversible behavioral adaptation, demon-
strating stark differences in post-reset recoverability.

• We formalize reversible behavioral adaptation through the notion of Runtime Low-Rank Adaptive Environments
(RLAE) in Section 3.4, where adaptive behavior is encoded in removable, runtime-controlled parameterizations
while the base model remains frozen.

• We introduce recoverability as an explicit evaluation criterion for adaptive neural systems in Section 3.5.
• We propose Structural Variance Analysis for Robustness (SVAR) in Section 3.7, as a diagnostic methodology

for assessing behavioral stability under controlled perturbations.

2 Background and Related Work

2.1 Weight-Based Neural Adaptation

Weight-based neural adaptation refers to adaptation paradigms in which behavioral change is realized through direct
updates to a model’s parameter vector. Given a pretrained model parameterized by a shared parameter set (denoted
abstractly as θ), adaptation is performed by applying gradient-based optimization to modify θ in order to minimize a
task- or objective-specific loss. This formulation underlies standard fine-tuning procedures, reinforcement learning
from human feedback (RLHF), and many continual learning approaches [1, 2].

In this setting, a single shared parameter set is reused across all objectives, and adaptation dynamics are governed by
optimization and regularization strategies applied to the same representational substrate. As a result, weight-based
adaptation serves as the canonical baseline against which alternative adaptation mechanisms—such as parameter
isolation or behavioral modularization—are typically contrasted in the literature.
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2.2 Catastrophic Forgetting and Representation Drift

A central challenge arising from sequential weight-based adaptation is catastrophic forgetting, wherein performance
on previously learned tasks degrades as new tasks are introduced. This phenomenon is commonly framed through
the stability–plasticity dilemma: models must remain sufficiently plastic to acquire new behaviors while maintaining
stability with respect to existing ones [1, 2].

Prior work has shown that forgetting is closely associated with representation drift, whereby updates introduced to
satisfy new objectives alter internal representations relied upon by earlier behaviors. Because task-relevant information
is typically distributed across shared parameters, such changes are not cleanly localized, and updates can propagate
through overlapping representations in complex and difficult-to-predict ways [3]. As a result, even constrained or
regularized updates may induce unintended interference across tasks.

Several approaches aim to mitigate forgetting by reducing parameter interference rather than by improving optimization
alone. Architectural isolation methods, such as Progressive Neural Networks [5], and parameter isolation techniques,
such as PackNet [6], limit destructive interference by preventing updates to parameters deemed important for prior
tasks. While effective at preserving performance, these methods primarily target retention and do not explicitly address
reversibility or behavioral rollback.

2.3 Parameter-Efficient Adaptation Methods

Parameter-efficient adaptation methods aim to reduce the computational and memory costs of adapting large pretrained
models. Techniques such as adapters, low-rank adaptation (LoRA), and other parameter-efficient fine-tuning (PEFT)
approaches introduce a small number of additional trainable parameters while leaving the majority of the base model
unchanged [7, 8].

These methods are primarily motivated by efficiency and scalability, enabling rapid adaptation without full retraining or
storage of multiple model copies. Although parameter-efficient approaches implicitly introduce a degree of modularity,
they are generally not designed with reversibility, behavioral rollback, or long-term governance as explicit objectives.
As a result, the extent to which they support controlled recovery of prior behaviors remains underexplored.

2.4 Limitations of Existing Approaches

Despite significant progress in mitigating catastrophic forgetting and improving adaptation efficiency, existing ap-
proaches exhibit important limitations with respect to reversibility and recoverability. Weight-based adaptation methods
fundamentally lack guarantees of identity preservation: once shared parameters are updated, restoring a model to a prior
behavioral state typically requires checkpoint restoration or retraining, with no assurance of behavioral equivalence.

Architectural and parameter isolation approaches demonstrate that restricting parameter interference can preserve prior
performance, but they were not designed to support reversible adaptation. Progressive Neural Networks [5] incur linear
growth in model capacity and do not provide mechanisms for deactivating or removing task-specific behavior. PackNet
[6] relies on irreversible pruning decisions that lack clean rollback semantics. As a result, these methods do not offer a
principled notion of recoverability or controlled behavioral rollback.

More broadly, existing techniques emphasize retention, efficiency, or stability, rather than explicit guarantees of
behavioral reversibility. This leaves a gap between mitigating forgetting and enabling controlled, auditable, and
reversible adaptation, which we address in this work by treating recoverability as a first-class structural property of
adaptive systems.

3 Formal Framework

3.1 Model Decomposition

We consider a neural model f whose behavior is determined by a set of parameters. To reason about adaptation and
reversibility, we decompose these parameters into two disjoint components: a core parameter set and a behavioral
parameter set.

The core parameters, denoted by θ, encode the model’s foundational representations and define its identity. These
parameters capture the pretrained capabilities of the model and are assumed to remain fixed during reversible adaptation.
In contrast, the behavioral parameters, denoted by ϕ, encode task- or objective-specific adaptations that modify the
model’s observable behavior without altering its core identity.
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Under this decomposition, the model’s output can be written abstractly as f(x; θ, ϕ) for an input instance x, where
changes in behavior arise from modifications to ϕ, while θ remains frozen. This separation allows us to distinguish
between changes that preserve the model’s identity and those that fundamentally alter it.

We denote by I(f) the identity of the model, defined as the behavior induced by the core parameters θ in the absence of
adaptive components. An adaptation mechanism is said to preserve identity if it leaves I(f) unchanged.

3.2 Adaptation Operators

We formalize adaptation as an operator that transforms a model by modifying a subset of its parameters. Under the
decomposition introduced in Section 3.1, different adaptation paradigms correspond to distinct classes of operators
acting on either the core or behavioral parameter sets.

We denote by Aw a weight-based adaptation operator, which applies updates directly to the core parameters θ. Formally,
Aw induces a mapping:

Aw : (θ, ϕ) 7→ (θ′, ϕ), θ′ ̸= θ,

yielding a transformed model:
Aw(f) = f(x; θ′, ϕ).

Because the same parameter set encodes multiple behaviors, this operator necessarily alters the model’s identity as
defined by I(f).
Note. Weight-based adaptation Aw subsumes both unstructured parameter perturbations and structured gradient-based
fine-tuning, as both directly overwrite core parameters θ.

In contrast, we denote by Ab a behavioral adaptation operator, which modifies only the behavioral parameters ϕ while
leaving the core parameters unchanged. Behavioral adaptation is characterized by the mapping:

Ab : (θ, ϕ) 7→ (θ, ϕ′),

and produces a model:
Ab(f) = f(x; θ, ϕ′),

with θ held fixed. This operator enables changes in observable behavior without altering the model’s identity.

Finally, we define an unload operator, denoted by K, which removes the behavioral component from an adapted model.
The unload operation is given by

K : (θ, ϕ) 7→ (θ, ∅),

and, when applied to a model, yields:
K(f(x; θ, ϕ)) = f(x; θ, ∅).

The existence of K provides an explicit rollback mechanism for behavioral adaptation.

3.3 Structural Irreversibility

We define structural irreversibility as a property of adaptation mechanisms that operate on shared model parameters.
An adaptation process is structurally irreversible if, after applying the adaptation, there exists no general procedure that
can restore the model to its original behavior without access to an explicit parameter checkpoint or retraining.

Under the operator formulation introduced in Section 3.2, weight-based adaptation Aw modifies the core parameter set
θ. Because θ simultaneously encodes multiple behaviors and abstractions, updates induced by new objectives become
entangled with representations supporting prior behaviors. As a consequence, the mapping induced by Aw is not, in
general, invertible with respect to behavioral equivalence.

Formally, let f0 denote a model with parameters (θ, ϕ) and let f1 = Aw(f0) be the adapted model with core parameters
θ′ ̸= θ. Structural irreversibility arises when no operator R exists such that:

R(f1) ≡ f0

under behavioral equivalence, unless R has access to the original parameter state θ. In practice, this implies that
rollback requires full checkpoint restoration or retraining, rather than a principled undo operation.

Crucially, this irreversibility is not attributed to suboptimal optimization, insufficient regularization, or poor hyperpa-
rameter choices. Instead, it follows directly from the use of a shared representational substrate for multiple objectives.
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Once task-specific updates are absorbed into the core parameter space, their effects cannot be cleanly disentangled from
pre-existing behaviors.

Structural irreversibility therefore characterizes a fundamental limitation of weight-based adaptation paradigms:
behavioral changes introduced through shared-parameter updates are persistent by construction, and recovery of prior
behavior cannot be guaranteed without explicit preservation of the original model state.

3.4 Reversible Behavioral Learning (RLAE)

We define reversible behavioral learning as an adaptation paradigm in which changes in observable behavior can be
introduced and subsequently removed without altering the core parameters θ of the model. In contrast to weight-based
adaptation, reversibility here is achieved by construction through structural separation rather than through optimization
or regularization.

Under the operator formulation introduced in Section 3.2, reversible behavioral learning corresponds to adaptation via
the behavioral operator Ab, which modifies only the behavioral parameter set ϕ while keeping the core parameters θ
fixed. Because the core representational substrate remains unchanged, the model’s identity I(f) is preserved throughout
adaptation.

Crucially, reversibility follows directly from the existence of the unload operator K. For any model adapted via Ab,
applying K deterministically restores the model to its core-identity state:

K(Ab(f)) = f(x; θ, ∅) (by unload operator, Section 3.2)

This rollback operation does not require access to prior checkpoints, retraining, or approximate inversion. Recovery is
exact by construction, as no information about the original model is lost during adaptation.

We refer to this formulation as a Runtime Low-Rank Adaptive Environment (RLAE). In this setting, adaptive behavior
is encoded in removable, runtime-controlled parameterizations that are structurally decoupled from the model’s core
identity parameters. The term “runtime” emphasizes that behavioral components can be dynamically attached or
detached during deployment, while “low-rank” reflects a common but non-essential instantiation of such behavioral
parameterizations.

Importantly, RLAE is not defined by a specific architecture, optimization method, or parameterization strategy. Rather,
it denotes a structural principle: adaptive behavior must reside in a parameter subspace that is isolated from the core
identity substrate and admits an explicit unload operation. Any adaptation mechanism satisfying these structural
constraints is reversible under this formulation.

Reversible behavioral learning therefore stands in direct contrast to weight-based adaptation. While the latter absorbs
task-specific updates into shared parameters and exhibits structural irreversibility, RLAE guarantees identity preservation
and exact recoverability by design.

3.5 Divergence Metrics and Recoverability Factor

To quantify the effects of adaptation and rollback, we require a metric that captures behavioral deviation between
model states. We measure behavioral change by comparing the output distributions induced by different parameter
configurations under a fixed input distribution.

Let f0 denote a reference model and f1 an adapted or recovered model. For an input x, let p0(y | x) and p1(y | x)
denote the corresponding output distributions. We define behavioral divergence using the Kullback–Leibler (KL)
divergence:

DKL(f0 ∥ f1) = Ex∼D [DKL(p0(y | x) ∥ p1(y | x))] ,
where D denotes the evaluation input distribution.

KL divergence provides a sensitive measure of changes in observable behavior, capturing deviations that may not be
reflected in task accuracy alone. In the context of adaptation, we compute divergence both immediately after adaptation
and after any rollback or unload operation. Using this divergence measure, we define the Recoverability Factor (RF) as
a normalized measure of behavioral recovery:

RF = 1− DKL(f0 ∥ frec)
DKL(f0 ∥ fadapt)

,

where fadapt denotes the adapted model and frec denotes the model after rollback. The recoverability factor satisfies
RF ∈ [0, 1], with RF = 1 indicating exact behavioral recovery and RF = 0 indicating no recovery relative to the
adapted state.
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In weight-based adaptation, rollback typically relies on approximate procedures or retraining, leading to non-zero
post-reset divergence and RF < 1. In contrast, reversible behavioral adaptation admits deterministic rollback through
the unload operator, yielding near-zero divergence and RF ≈ 1 in practice.

Throughout our experiments, we report both KL divergence and recoverability factor to distinguish between irreversible
behavioral drift and structurally reversible adaptation. This allows recoverability to be treated as a first-class evaluation
criterion, complementary to conventional performance metrics.

3.6 Identity Leakage Score (ILS)

Let fθ denote the baseline model with frozen core parameters θ, and let fθ′ denote the model obtained after an adaptation
followed by a reset operation. Let P = {p1, . . . , pn} be a fixed set of evaluation prompts.

For a given prompt pi ∈ P , the prompt-level identity divergence is defined as

ILS(pi) = D(fθ(pi), fθ′(pi)) ,

where D(·, ·) is a divergence measure consistent with the global divergence metric defined in Section 3.5

The Identity Leakage Score over P may be analyzed at the prompt level or summarized via aggregation,

ILSavg =
1

|P|
∑
pi∈P

ILS(pi),

or via thresholded detection,
ILSflag(pi) = I[ILS(pi) > τ ] ,

for a fixed diagnostic threshold τ .

Low values of ILS(pi) indicate preservation of functional identity under prompt pi, while elevated values indicate
residual behavioral deviation after reset. Unlike global divergence measures or scalar recoverability factors, ILS captures
localized functional residue that may persist despite apparent global recovery.

ILS is employed strictly as a post-adaptation diagnostic. It is not optimized during training, does not influence adaptation
dynamics, and is not intended as a performance metric.

3.7 Structural Variance Analysis for Robustness (SVAR)

While recoverability captures whether an adaptation can be undone, it does not by itself characterize how stable the
adapted behavior is under small structural disturbances. In practical settings, adaptive components may be subject to
noise, approximation error, or partial modification, making robustness an important complementary consideration. To
capture this aspect, we introduce Structural Variance Analysis for Robustness (SVAR) as a means of assessing behavioral
stability under controlled perturbations.

SVAR examines how a model’s observable behavior varies when small perturbations are applied to the adaptive
components of the system. Let f(x; θ, ϕ) denote a model under a given behavioral adaptation state, and let ∆ represent
a bounded perturbation applied to the behavioral parameters ϕ. The perturbed model is given by

f∆(x) = f(x; θ, ϕ+∆),

with the core parameters θ held fixed. By construction, such perturbations probe the local stability of the adapted
behavior without altering the model’s identity.

Using the divergence metric introduced in Section 3.5, we quantify structural variance as

SVAR = E∆∼P [DKL(f(x; θ, ϕ) ∥ f(x; θ, ϕ+∆))] ,

where P denotes a distribution over admissible perturbations. Lower SVAR values indicate that behavioral changes are
well-localized and insensitive to small disturbances, while higher values reflect increased sensitivity and entanglement.

In the context of adaptation mechanisms, SVAR provides insight into how tightly behavioral modifications are coupled
to the underlying representational substrate. Adaptation schemes that rely on shared parameter updates tend to exhibit
higher structural variance, as small perturbations can propagate non-locally through entangled representations. In
contrast, structurally separated behavioral adaptation typically yields lower variance, reflecting greater control and
stability of behavioral changes.
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Together with recoverability, SVAR offers a complementary perspective on adaptive behavior. While recoverability
addresses whether prior behavior can be restored, structural variance characterizes how robust the adapted behavior is
to perturbations. Both properties are essential for evaluating the safety and controllability of long-lived adaptive neural
systems.

SVAR provides a diagnostic measure of behavioral stability by quantifying output variance under bounded structural
perturbations of adaptive parameters, without modifying the learning process or model identity.

3.8 Scope and Assumptions

This work examines reversibility as a structural property of neural adaptation mechanisms rather than as a consequence
of specific optimization procedures, training heuristics, or alignment strategies. Accordingly, our analysis operates
under a set of explicit scope boundaries and assumptions, which we state here to clarify the applicability and limitations
of our results.

First, we assume access to a pretrained base model whose core parameters θ can be frozen during adaptation. This
assumption reflects standard deployment practice for large pretrained models, where the base model is treated as a fixed
artifact and adaptation is applied post hoc. Our claims do not depend on the particular pretraining procedure or model
architecture, provided that a well-defined core parameter set can be identified.

Second, we assume that adaptive behavior can be represented in a parameter subspace that is structurally separable from
the core parameters and admits an explicit attachment and detachment mechanism. This includes, but is not limited
to, low-rank adaptation modules, adapter layers, or other parameter-isolation techniques. The existence of an explicit
unload operator K is central to our definition of reversibility; adaptation mechanisms that lack such an operator fall
outside the scope of reversible behavioral learning as defined in this work.

Third, we do not assume that behavioral adaptations are benign, aligned, or semantically correct. Our analysis concerns
recoverability and identity preservation, not behavioral desirability. In particular, reversible adaptation does not
preclude the introduction of harmful, misleading, or adversarial behaviors; it merely ensures that such behaviors can be
deterministically removed without modifying the model’s core parameters.

Fourth, we do not claim that reversible behavioral adaptation eliminates catastrophic forgetting, distribution shift, or
generalization failure. Rather, we show that reversible adaptation enables exact behavioral rollback with respect to
the frozen core model identity. Performance degradation during adaptation and residual errors within the behavioral
component itself remain possible and are orthogonal to the notion of recoverability studied here.

Finally, our evaluation assumes black-box access to model outputs for the purpose of measuring behavioral divergence.
Metrics such as KL divergence, recoverability factor, identity leakage score, and structural variance are employed
strictly as diagnostic tools and are not optimized during training. We do not assume access to internal activations,
gradients, or privileged training signals during evaluation.

Within this scope, our results characterize structural irreversibility as a fundamental limitation of shared-parameter
adaptation and establish reversibility as a property that must be designed into adaptation mechanisms, rather than
recovered through post hoc optimization or regularization.

4 Experimental Setup

The goal of our experimental evaluation is not to maximize task performance, but to empirically assess recoverability,
identity preservation, and structural robustness under different adaptation scenarios. Accordingly, our experiments are
designed to isolate the structural effects of adaptation and rollback, rather than to benchmark accuracy on downstream
performance tasks.

All experiments compare weight-based adaptation against reversible behavioral adaptation under controlled conditions,
using identical base models, data distributions, and evaluation protocols.

4.1 Models

We conduct experiments using pretrained neural models drawn from a single architecture family, with each model
treated as a fixed core identity throughout evaluation with core parameters θ. The specific architecture and scale of the
model are not central to our claims; instead, we require only that the model supports both direct weight updates and
parameter-isolated behavioral adaptation.
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To ensure a fair comparison, the same base model initialization is used across all adaptation scenarios. For reversible
behavioral adaptation, the core parameters θ are frozen, and all learning is confined to a separate behavioral parameter
set ϕ. For weight-based adaptation, updates are applied directly to θ.

Unless otherwise specified, no architectural changes are introduced beyond those required to support parameter isolation
in the behavioral adaptation setting.

4.2 Adaptation Scenarios

We evaluate two primary adaptation paradigms:

1. Weight-Based Adaptation: In the weight-based setting, adaptation is performed by directly updating the core
parameter set θ using gradient-based optimization with respect to a task-specific objective. This paradigm
subsumes standard fine-tuning and reinforcement learning–based post-training alignment. After adaptation,
rollback is attempted using practical post-hoc procedures, including reset heuristics or partial restoration, but
without access to the original parameter checkpoint unless explicitly stated.

2. Reversible Behavioral Adaptation: In the reversible setting, adaptation is performed exclusively through
updates to the behavioral parameter set ϕ, while the core parameters θ remain frozen. Behavioral parameters
are attached at runtime and can be removed via the unload operator K defined in Section 3.2. Rollback is
implemented deterministically by unloading ϕ, yielding the original core model without approximation or
retraining.

Both paradigms are exposed to identical adaptation objectives, data, and training budgets to ensure comparability.

4.3 Prompt Set and Evaluation Protocol

To evaluate behavioral divergence and recovery, we define a fixed prompt set P drawn from the same distribution used
during adaptation, with additional held-out prompts included to assess generalization effects. Prompts are held constant
across all experimental conditions.

Evaluation proceeds in three stages:

1. Baseline Evaluation: The frozen base model f(x; θ, ∅) is evaluated on P to establish a reference behavioral
distribution.

2. Post-Adaptation Evaluation: The adapted model f(x; θ′, ϕ) or f(x; θ, ϕ) is evaluated to measure behavioral
change induced by adaptation.

3. Post-Rollback Evaluation: Rollback is applied (via approximate reset for weight-based adaptation or unload
for reversible adaptation), and the resulting model is evaluated to assess behavioral recovery.

All divergence metrics are computed with respect to the baseline evaluation.

4.4 Metrics

We evaluate adaptation outcomes using a set of complementary metrics designed to capture behavioral divergence,
recoverability, identity preservation, and structural robustness. All metrics are computed post hoc for evaluation only
and are not optimized during training or adaptation.

1. Behavioral Divergence: We quantify changes in observable behavior using the Kullback–Leibler (KL)
divergence defined in Section 3.5. Divergence is computed between the output distributions of two model
states and averaged over the fixed prompt set P . This metric captures distribution-level behavioral deviation
that may not be reflected in task accuracy alone.

2. Recoverability Factor (RF): Recoverability is measured using the Recoverability Factor introduced in
Section 3.5, which normalizes post-rollback divergence relative to the divergence induced by adaptation. RF
provides a scalar measure of how completely adaptation-induced behavioral changes are eliminated after
rollback, with RF = 1 indicating exact recovery.

3. Identity Leakage Score (ILS): To detect localized residual deviations that may persist despite apparent global
recovery, we compute prompt-level Identity Leakage Scores as defined in Section 3.6. ILS is used strictly
as a diagnostic tool to identify functional residue under specific prompts and is not aggregated into a single
performance metric.
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4. Structural Variance (SVAR): To assess robustness of adaptive behavior, we compute Structural Variance as
defined in Section 3.7 by applying bounded perturbations to the adaptive parameter set and measuring the
resulting behavioral divergence. For reversible behavioral adaptation, perturbations are applied to the behavioral
parameters ϕ with core parameters θ held fixed. For weight-based adaptation, analogous perturbations are
applied to the adapted parameter state to probe sensitivity to small structural changes.

4.5 Implementation Details

All experiments are conducted using fixed random seeds to ensure reproducibility. Optimization hyper-parameters,
training durations, and evaluation settings are held constant across adaptation paradigms wherever applicable.

For reversible behavioral adaptation, behavioral parameters are initialized independently and attached dynamically at
runtime. Rollback is implemented through explicit unloading of behavioral parameters, without modifying the core
model state. For weight-based adaptation, rollback attempts do not assume access to the original pretrained checkpoint
unless explicitly noted.

We emphasize that no metric introduced in this work is optimized during training; all metrics are computed post hoc for
evaluation and analysis only. Reversible behavioral adaptation constrains the locus of learning but does not introduce a
new learning rule, optimizer, or continual learning algorithm.

5 Experimental Results

This section presents the empirical results of the M-series experiments. For each experiment, we report (i) a diagnostic
figure, (ii) a numerical table, and (iii) a concise interpretation.

5.1 Exact Rollback via Behavioral Elimination
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Exact Rollback via Behavioral Elimination

Figure 1: Exact rollback via behavioral elimination. Mean post-reset KL divergence collapses to numerical zero once
the elimination rate exceeds a critical threshold ϵ∗.
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Elimination Rate ϵ Mean Post-reset KL Recovery Regime

0.000 1.16× 10−2 Partial
0.001 3.39× 10−1 Partial
0.010 1.04× 101 Partial
0.050 1.86× 101 Partial
0.200 1.03× 10−2 Partial
0.400 1.94× 10−3 Partial
0.600 < 10−6 Exact
0.800 < 10−6 Exact
1.000 < 10−6 Exact

Table 1: Post-reset KL divergence under increasing behavioral elimination rate ϵ.

Figure 1 demonstrates the effect of progressive behavioral elimination on post-reset divergence under reversible
behavioral adaptation. As the elimination rate ϵ increases, the mean post-reset KL divergence decreases monotonically,
reflecting the systematic removal of adaptive behavioral capacity from the model. This behavior indicates that adaptation-
induced divergence is localized within the removable behavioral component rather than entangled with the frozen core
parameters.

5.2 Structural Irreversibility under Weight Mutation
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Figure 2: Structural irreversibility under weight mutation. Post-reset divergence increases monotonically with mutation
intensity α and does not recover.

Mutation Intensity α Mean Post-reset KL Behavioral Status

0.001 0.462 Scarred but coherent
0.010 10.928 Severely degraded
0.050 18.933 Corrupted

Table 2: Post-reset KL divergence under increasing weight mutation intensity α.
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Figure 2 presents the post-reset divergence induced by direct weight mutation applied to the shared parameter set.
Even at low mutation intensities, a non-zero post-reset KL divergence persists after attempted rollback, indicating
that behavioral changes introduced through weight modification are not cleanly removable. As the mutation intensity
α increases, the magnitude of residual divergence grows monotonically, reflecting progressively larger and more
destructive interference with the model’s core representations.

Unlike reversible behavioral elimination, no mutation regime exhibits a collapse toward zero divergence. Instead,
increasing mutation intensity amplifies irreversible behavioral drift, demonstrating that shared-parameter adaptation
lacks a well-defined inverse or unload operator. These results empirically substantiate the claim that weight-based
adaptation is structurally irreversible: once task-specific updates are absorbed into the shared parameter space, their
effects cannot be reliably undone without explicit checkpoint restoration or retraining.

5.3 Recoverability Collapse: Weight-Based vs Reversible Adaptation
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Figure 3: Structural collapse of recoverability. Weight-based adaptation exhibits irreversible scarring, while reversible
behavioral adaptation achieves exact rollback.

Adaptation Method Post-reset KL RF (%)

Weight-based Adaptation > 1.0 ≈ 0
Reversible Behavioral (RLAE) < 10−6 100

Table 3: Recoverability factor (RF) across adaptation mechanisms.

Figure 3 contrasts the recoverability of weight-based adaptation with reversible behavioral adaptation using the
recoverability factor (RF). Across all evaluated settings, weight-based adaptation yields near-zero recoverability,
indicating that post-reset behavior remains closer to the adapted state than to the original baseline. This behavior is
consistent with persistent identity scarring observed in the post-reset divergence measurements.

In contrast, reversible behavioral adaptation consistently achieves RF = 100%, corresponding to exact restoration of
baseline behavior after rollback. This stark separation between adaptation paradigms highlights a structural collapse of
recoverability in shared-parameter learning. Importantly, this collapse is not sensitive to task type, prompt distribution,
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or training budget, reinforcing the conclusion that recoverability is determined by the structural locus of adaptation
rather than by optimization quality or regularization strategy.

5.4 Baseline Identity Stability Across Sprints

p1 p10 p2 p3 p4 p5 p6 p7 p8 p9
Prompt index

0.1

0.2

0.3

0.4

O
ut

pu
t e

nt
ro

py

Baseline Entropy Distribution Across Sprints
Sprint 1
Sprint 2

Sprint 3
Sprint 4

Figure 4: Baseline output entropy across sprints. No systematic drift is observed.

Sprint Mean Entropy Std. Dev. Max Entropy

Sprint-1 0.245 0.067 0.359
Sprint-2 0.231 0.081 0.342
Sprint-3 0.262 0.069 0.371
Sprint-4 0.251 0.076 0.356

Table 4: Baseline entropy statistics across sprints.

Figure 4 reports the output entropy of the frozen base model evaluated across all experimental sprints. Both the mean
entropy and its variance remain stable over time, with no systematic trend or drift observed. This stability confirms that
the base model identity remains unchanged across the experimental pipeline.

By ruling out baseline identity drift, these results eliminate a key confounding factor in the interpretation of post-reset
divergence. The observed differences between adaptation paradigms therefore cannot be attributed to changes in the
underlying model or evaluation distribution, but must instead arise from the structural properties of the adaptation
mechanisms themselves.

In simple terms, this experiment verifies that the base model itself remains stable throughout all experimental runs. The
output entropy of the frozen model does not change across sprints, indicating that neither the model nor the evaluation
setup drifts over time. This confirms that the baseline behavior is consistent and reliable.

As a result, any divergence observed after adaptation and reset cannot be explained by accidental changes in the base
model or data distribution. Instead, the differences we observe directly reflect the effects of the adaptation mechanisms
being tested. This validation step ensures that our conclusions about reversibility and irreversibility are not influenced
by hidden baseline instability.
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5.5 Recoverability Across Model Scales
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Figure 5: Recoverability across model scales. Reversible behavioral adaptation remains invariant, while weight mutation
degrades with scale.

Model Scale Adaptation Method Recoverability (%)

1.5B RLAE 100
1.5B Weight Mutation 30

3B RLAE 100
3B Weight Mutation 40

7B RLAE 100
7B Weight Mutation 10

Table 5: Post-reset divergence and recoverability across model sizes.

Figure 5 evaluates recoverability across multiple model scales within the same architectural family. Under weight-based
adaptation, post-reset divergence increases with model size, and recoverability degrades accordingly. This trend suggests
that structural irreversibility becomes more pronounced as parameter dimensionality grows, likely due to increased
entanglement among shared representations.

In contrast, reversible behavioral adaptation maintains exact recovery across all evaluated model scales. Post-reset
divergence remains at numerical zero, and recoverability is invariant to scale. This invariance demonstrates that
reversibility is preserved independently of model capacity, further reinforcing the claim that recoverability is a structural
property of the adaptation mechanism rather than a function of model size or complexity.

5.6 Summary of Results

Across all experiments, recoverability consistently emerges as a structural property of neural adaptation rather than an
optimization artifact. Adaptation mechanisms that operate through direct modification of shared parameters introduce
persistent, scale-dependent behavioral scarring that cannot be reliably undone through post-hoc procedures. In contrast,
reversible behavioral adaptation achieves exact and deterministic rollback by construction, preserving the base model
identity across tasks, perturbations, and model scales. Together, these results empirically establish structural reversibility
as a necessary design property for safe, controllable, and long-lived adaptive neural systems.
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6 Conclusion

Your conclusion here
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